
Bounded-Input Bounded-Output (BIBO) S tability 

A system with input x and output y is  BIBO stable if, for every bounded x, y 

is  bounded (i.e., |x(n)| <  ∞ for a ll n implies  that |y(n)| <  ∞ for a ll n ).  
 

To show that a  sys tem is  BIBO stable, we  must show that every bounded 

input leads  to a  bounded output. 
 

To show that a  sys tem is  not BIBO stable, we need only find a  s ingle  

bounded input that leads  to an unbounded output. 

In practical terms, a  BIBO s table  sys tem is  well behaved in the  sense  that, 

as  long as  the  sys tem input remains  finite  for a ll time, the  output will a lso 

remain finite  for a ll time. 
 

Usually, a  sys tem that is  not BIBO s table  will have  serious safety issues. 

For example, an iPod with a  battery input of 3.7 volts  and headset output of 

∞ volts  would result in one  vaporized Apple  cus tomer and one  big lawsuit. 
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Time Invariance  (TI) 
A system H is  said to be  time invar iant (TI) if, for every sequence  x and 

every integer n0, the  following condition holds: 

y(n − n0) =  H x′(n) where  y =  H x and x′(n) =  x(n − n 0)  

(i.e., H commutes with time shifts ).  
 

In other words, a  sys tem is  time invariant if a  time shift (i.e., advance  or 

delay) in the  input a lways  results  only in an identical time shift in the  

output. 
 

A system that is  not time invariant is  said to be  time varying. 
 

In s imple  terms, a  time invariant sys tem is  a  sys tem whose  behavior does 

not change with respect to time. 
 

Practically speaking, compared to time-varying sys tems, time-invariant 

sys tems are  much easier to design and analyze, s ince  their behavior 

does  not change with respect to time. 
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Additivity, Homogene ity, and Linearity A system H is  said to be  additive if, for a ll sequences  x1  and x2, the  

following condition holds: 
 

H (x1 +  x2) =  H x1 +  H x2 

(i.e., H commutes with sums ).  

A sys tem H is  said to be  homogeneous if, for every sequence  x and 

every complex constant a, the  following condition holds: 

H (ax) =  aH x 

(i.e., H commutes with multiplication by a constant ).  

A sys tem that is  both additive  and homogeneous  is  said to be  linear . 

In other words, a  sys tem H is  linear, if for a ll sequences  x1 and x2 and all 

complex constants  a1  and a2, the  following condition holds: 

H (a1x1 +  a2x2) =  a1H x1 +  a2H x2 

(i.e., H commutes with linear combinations ).  

The  linearity property is  a lso referred to as  the  superposition property. 

Practically speaking, linear sys tems are  much easier to design and 

analyze than nonlinear sys tems. 
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Part 8 
 

 
 
 

Dis crete-Time Linear Time-Invariant (LTI) Sys tems  
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Why Linear  Time- Inva riant (LTI) Sys tems?  

In engineering, linear-time invariant (LTI) sys tems play a  very important 

role. 
 

Very powerful mathematical tools  have  been developed for analyzing LTI 

sys tems. 

LTI sys tems are  much eas ier to analyze  than sys tems that are  not LTI. In 

practice, sys tems that are  not LTI can be  well approximated us ing LTI 

models. 
 

So, even when dealing with sys tems that are  not LTI, LTI sys tems s till play an 

important role. 

Version: 2016-01-25 



Section 8.1 
 

 
 
 

Convolution 
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DT Convolution 
The (DT) convolution of the  sequences  x and h, denoted x ∗ h, is  defined 

as  the  sequence  
 

∞ 

x ∗ h(n ) =  ∑ 
k= −∞ 

x(k)h(n − k ).  

The convolution x ∗ h evaluated at the point n is  s imply a  weighted sum of 

elements  of x, where  the  weighting is  given by h time reversed and shifted by 

n. 

Herein, the  as terisk symbol (i.e., “∗”) will a lways  be  used to denote  

convolution, not multiplication. 
 

As we shall see, convolution is  used extensively in the  theory of (DT) 

sys tems. 
 

In particular, convolution has  a  special s ignificance  in the  context of (DT) 

LTI sys tems. 
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Practica l Convolution Computa t ion 

To compute  the  convolution 

x ∗ h(n) =  
∞ 

∑ 
k =−∞  

x(k)h(n − k), 

we proceed as  follows: 

1 

4 

5 

• Plot x(k) and h(n − k) as  a  function of k. 

• Initia lly, cons ide r an a rbitra rily la rge  nega tive  va lue  for n. This  will re sult in 

•h(n − k) be ing shifted ve ry fa r to the  le ft on the  time  

axis . Write  the  ma thematica l express ion for x ∗ h(n ).  

•Increase  n gradua lly until the  express ion for x ∗ h(n) changes  form. 

Record the  inte rva l ove r which the  express ion for x ∗ h(n) was  va lid. 

•Repea t s teps  3 and 4 until n is  an a rbitra rily la rge  pos itive  va lue . This  

corre sponds  to h(n − k) be ing shifted ve ry fa r to the  right on the  time  axis. 

•The re sults  for the  va rious  inte rva ls  can be  combined in orde r to obta in 

an express ion for x ∗ h(n) for a ll n. 

2 

3 

6 
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Properties  of Convolution 

The convolution operation is  commutative. That is , for any two sequences  

x and h, 
 
 

x ∗ h =  h ∗ x. 
 
 

The convolution operation is  associative.  That is , for any sequences  x, h1, 

and h2, 
 
 

(x ∗ h1 ) ∗ h2 =  x ∗ (h1 ∗ h2). 
 
 

The convolution operation is  distributive with respect to addition.  That is , 

for any sequences  x, h1, and h2, 
 
 

x ∗ (h1 +  h2) =  x ∗ h1 +  x ∗ h2. 
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Representa t ion of Sequences  Us ing Impulses  

For any sequence  x, 

x(n ) =  
∞ 

∑ 
k =−∞  

x(k)δ(n − k) =  x ∗ δ(n). 

Thus, any sequence  x can be  written in terms of an express ion involving δ. 

Moreover, δ is  the  convolutional identity. That is , for any sequence  x, 
 
 

x ∗ δ =  x. 
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Circula r  Convolution The convolution of two periodic sequences  is  usually not well defined. This  

motivates  an alternative  notion of convolution for periodic sequences  

known as  circular convolution. 
 

The circular  convolution (a lso known as  the  DT periodic convolution) of 

the  T -periodic sequences  x and h, denoted x ⊛ h, is  defined as  

x ⊛ h(n ) =  ∑ 
k= (N) 

N−1 

x(k)h(n − k) =  ∑ x(k)h(mod(n − k, N )),  
k= 0 

where  mod(a, b) is  the  remainder after divis ion when a is  divided by b. 

The  circular convolution and (linear) convolution of the  N-periodic 

sequences  x and h are  re la ted as  follows: 
 

∞ 

x ⊛ h(n) =  x0 ∗ h(n) where  x(n ) =  ∑ 
k =−∞  

x0(n − kN) 

(i.e., x0(n) equals  x(n) over a  s ingle  period of x and is  zero elsewhere ).  

Version: 2016-01-25 



Section 8.2 
 

 
 
 

Convolution and LTI Sys tems  
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Impulse  Response  

The response  h of a  sys tem H to the  input δ is  called the  impulse 

response of the  sys tem (i.e., h =  H { δ }).  

For any LTI sys tem with input x, output y, and impulse  response  h, the  

following rela tionship holds: 
 
 

y =  x ∗ h. 
 

 

In other words, a  LTI sys tem s imply computes a convolution. 

Furthermore, a  LTI sys tem is  completely characterized by its  impulse  

response. 
 

That is , if the  impulse  response  of a  LTI sys tem is  known, we can 

determine  the  response  of the  sys tem to any input. 
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Step Response  

The response  s of a  sys tem H to the  input u is  called the  step response of 

the  sys tem (i.e., s =  H { u }).  
 

The impulse  response  h and s tep response  s of a  sys tem are  re la ted as  
 
 

h(n) =  s(n) − s(n − 1).  
 
 

Therefore, the  impulse  response  of a  sys tem can be  determined from its  

step response  by (firs t-order) differencing. 
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Block Diagram of LTI Sys tems  

Often, it is  convenient to represent a  (DT) LTI sys tem in block diagram 

form. 
 

Since  such sys tems are  completely characterized by their impulse  

response, we often label a  sys tem with its  impulse  response. 
 

That is , we represent a  sys tem with input x, output y, and impulse  

response  h, as  shown below. 
 
 

x(n) y(n) 
h(n) 
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